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An Immune System Model in Discrete Time Based 
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Jerne's model for the immune system formulated in terms of a neural network 
recently proposed by Weisbuch and Atlan is generalized to interactions with 
continuous coupling coefficients. It is shown that even the extended model can 
be solved analytically without the aid of computer simulations and exhibits one 
additional attractor, which corresponds to a configuration with high concen- 
trations of active killer cells eventually causing death of the organism. 
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It has long been known that the immune system and the central nervous 
system share many  striking features at the level of system behavior, 
suggesting that similar mathematical  models might be appropriate  for each 
of them/~'2) Though the two systems penetrate most  other tissues of the 
body, the lymphocytes (white blood cells) never come into direct contact 
with nerve cells, being separated by the b lood-bra in  barrier. Both 
biological systems consist of several billions of highly specialized cells con- 
nected by excitatory and/or  inhibitory interactions to a small subset of the 
system, exhibit memory  related to the existence of attractors, and learn 
from experience by building up a memory  sustained b y  reinforcement, 
which might be formulated in terms of Hebbian-like self-organization 
rules. ~3) In humans, the central nervous system consists of about  10 l~ 
neurons, whereas the immune system contains roughly 1012 lymphocytes 
moving freely, unlike nerve cells, which remain in fixed positions in the 
brain. Meanwhile, there is compelling evidence from experiments for 
Jerne's postulate that the immune system can be described by a functional 
network.(~,2) 
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In the spirit of Jerne, (~ Weisbuch and Atlan (4~ recently discussed a 
fairly simplified immune network model guided by Cohen's experimental 
findings on autoimmune encephalomyelitis. (5) The proposed network con- 
sists of five interacting binary pools of interconnected formal threshold 
cells, killer cells C1, activated killer cells C2, helper cells C4, and two kinds 
of suppressor cells C3 and C5, induced by the killer cells C~ and the helper 
cells C4, respectively. The state of each pool can either take the value ai = 1 
or ai = 0, i = 1,..., 5, depending on the existence of high or low concen- 
trations with respect to different cell types. The synchronous and fully 
deterministic dynamics of this network is reminiscent of the pioneering 
discrete-time neural network model of McCulloch and Pitts (6) and can be 
described by the following set of equations of motion, where the five spins 
are supposed to be updated simultaneously according to (Fig. 1) 

a z ( t + r ) =  

o'3(t + 1;) = 

0"4(t q- T) = 

as ( t  + ~) = 

O{Cllal(t)- C13 0"3(t) + C14 0"4(t) } ( la )  

O{c21~rl(t)--c23~73(l)+c24ff4(t)--c25crs(t)} ( lb)  

(lc) 

O{C41ffl(t)} ( ld)  

0{C54~4(t)} ( le)  

The theta function is supposed to be unity for positive arguments and zero 
elsewhere. The bracket terms in Eq. (1) have their analog in the membrane 
potential in a neural network. The quantity ~ may be interpreted as the 
scale of the generation time, presumably of the order of a few days. 
Without loss of generality, the strengths of the interactions between the 
cells specified by the quantities c~ can be chosen arbitrarily in the interval 
[0, 1 ], whereas Weisbuch and Atlan assume that the coupling coefficients 
cij are all equal to one. Note that in the present model the coupling coef- 
ficients are in general not symmetric, in contrast to the immune network 
recently proposed by Hoffmann and accepted by Jerne. (2) The minus signs 
in the dynamical equations (1.1) and (1.2) correspond to the inhibitory 
character of the suppressor cells C3 and C5 with respect to their target cells 
C1 and C2, respectively. 

The time evolution of any physical quantity of interest follows 
immediately from the rather elementary mathematical nature of the model. 
Since the crucial active killer cells C2 inducing the disease do not give any 
input to the other cells of the network, they have no impact on the 
dynamical evolution of the system. The same arguments hold for the sup- 
pressor cells C5 with respect to the pools C1, C3, and C4. Hence, the 
equations of motion for the pools C2 and C5 decouple. Moreover, after the 
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Fig. 1. Schematic representation of positive (arrows) and negative (dots) couplings among 
the five pools. 

first time step the state of C3 equals the state of C 4 and the problem can be 
reduced to the two-pool system with the dynamical evolution 

0-1(t + ' r )  = O{0"1(t ) h- X10"3(/)} 

0"~(t+ r) = O{0-~(t)} 
(2) 

where XI=(Cl4--Cl3)/Cll s e r v e s  as a convenient control parameter, 
properly describing all the relevant configurations of the efficacies con- 
tributing to the dynamics of the killer pool C1. It is straightforward to 
verify that, independent of the choice of the coupling coefficients in the 
interval [0, 1 ] for t/> 3, 

0",(t) = o 3 ( t )  = 0- , ( t )  ( 3 )  

holds. This result eventually implies 

o-l(/) ---= O'3(t ) = 0"4(1 ) = 0"5(t) (4) 
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and the relevant state of the active killer cells C2 can the finally be deter- 
mined from 

The coefficient 

62(t + ~) = O{x261(t)}  (5) 

X 2 = C21 ~- C24 - -  (C23 + C25) (6) 

serves as a second control parameter describing the balance of the strength 
of the inhibitory and excitatory activations of the killer, helper, and sup- 
pressor cells C1, C3, C4, and C5 on their targets, the activated killer cells 
C2. Their state evidently depends uniquely on whether or not the sum of 
the efficiencies of the helper cells exceeds the sum of the efficiencies of the 
suppressor cells. Thus, only for x2 > 0, when the efficacies of the helper and 
killer cells are dominant, will the pool of the active killer cells C2 always be 
in state one, supposing that all the other cells are present in high concen- 
trations. On the other hand, if the suppressive weights are dominant, 
x2 ~< 0, the active killer cells will always be in state zero. The "number" of 
an attractor with respect to its configuration is defined in terms of its 
decimal representation according to (4) 

_r/= 61 -t- 262 -t- 2963 --}- 2364 q- 24ff5 (7) 

varying between 0_ and 31. 
Thus, Eqs. (3) and (4) imply that the model exhibits only three stable 

fixed points: the healthy virgin state 0 =  (0, 0, 0, 0, 0), the healthy carrier 
state 29 = (1, 0, 1, 1, 1), where active killer cells are only present in small 
concentrations, and the totally infected state 31=(1 ,  1,1, 1, 1). It is 
interesting to note that by introducing a nonzero threshold for the theta 
function in Eq. (1) a variety of different attractors can be reached, 
depending on the choice of the coupling coefficients. Since in the model 
proposed by Weisbuch and Atlan, ~4) where the coupling coefficients are 
restricted to unit magnitude, the control parameter x2 is strictly zero, 
attractor 31 does not occur in their model. 

Table I shows which attractors are reached from different initial con- 
centrations of the pools C1, C3, and C4 as a function of the control 
parameters Xl and x2. The initial concentrations of the pools C2 and C5 
can be chosen arbitrarily. 

One finds that for the choice xl ~< - 1  (Cll + c14~ < c13), meaning that 
the sum of the efficacies of the helper and killer cells C1 and Cz is less than 
or equal to the efficacy of the suppressor cells C3, the state of all pools will 
eventually be zero for arbitrary initial concentrations. On the other hand, 
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Table I. Stable Attractors Corresponding to Different Initial Concentrations 
for Different Control Parameter Regimes 

C 1 C 3 C 4 Attractor Control paramete_~r/regimes 

1 1 1 

1 0 1 

0 0 1 

1 0 0 

O 1 1 

1 1 0 

31 x l  > - 1  and  x2 > 0 

2_.99 x I > - 1  and  x 2 ~-~ 0 

0 x I ~ - 1  

31 x l  > 0  a n d x 2 > O  

29 x 1 > 0 and  x2 ~ 0 

0 Xl~<O 

0 0 0 0 

0 1 0 

for the choice x l > 0  (C14>C13) ,  when the efficacy of the killer cells C1 
exceeds the efficacy of the suppressor cells C3, the system falls on attractor 
29 or 31 independent of the initial condition except if there are neither 
killer nor helper cells present in the initial configuration. For the parameter 
choice - 1 ~< xl < 0 (cl1 + c14 > c13 > C14 ), when the efficacies of the sum of 
the killer and helper cells C1 and C4 exceed or equal the efficacy of the sup- 
pressor cells C3, which themselves have a higher efficacy than the killer cell, 
the final state depends on whether the initial concentrations of the killer 
and helper cells are larger or smaller than the concentration of the sup- 
pressor cells. In the latter case the fixed point _0 is reached for half of the 
possible initial concentrations, whereas the fixed points 29 and 3_[1 are 
reached in the first case. 

The model proposed by Weisbuch and Atlan, (4) where the quantities 
xt and x2 are strictly zero, is a special case of the latter constellation 
(0~<x~ < - 1 ) ,  only leading to the attractor 29 for 16 initial conditions, 
when the sum of the initial concentrations of the killer and helper cells C~ 
and C4 exceed the concentration of the suppressor cells C3 ; for the remain- 
ing 16 initial conditions, where the inhibitory effect is dominant, the system 
falls evidently on attractor _0. Thus there is always a 100% chance of 
surviving [C2(t)= 0] if the scale of the incubation time for intermediate 
states like 31 is not too long. 

In the model generalized to continuous coupling coefficients, the 
situation is somewhat different. Assuming that the coupling coefficients are 
chosen randomly according to a uniform distribution p(z) in the interval 
[0, 1], the probabilities P(Xl > 0), P(x~ > -1) ,  and P(x2 > 0) with respect 
to Table I can be calculated by evaluating the integrals 



494 K~rten 

P(xl  > O) = ff  p(Z1) p(Z2) O(Z 1 -- Z2) dz 1 dz 2 (8a) 

P(Xl> -1)=fffp(Zl)p(z2)p(z3)O(Zl-Z2-bz3)dzldz2dz3 (8b) 

P(x2>O)=ffff p(zl) . . .p(z4)O(zl-z2+z3-z4)dzl . . .dz 4 (8c) 

P(xl > 0) as well as P(x2 > 0) evidently take the value one-half, whereas 
P ( X l > - 1 )  can be calculated analytically for the uniform distribution, 
taking the value P(x~>-1)=5/6. Consequently, the attractor _0 is 
reached with a probability ~ 0.46, whereas attractors 29 and 31 are reached 
with the same probability ~0.27, still giving rise to an ~73% chance of 
surviving for a random distribution of the initial concentrations as well as 
the coupling coefficients. 

Preliminary computer simulations on a generalization of the 
Weisbuch-Atlan model to extended systems containing large numbers of 
units, each of them consisting of five pools of the different cell types 
interacting with itself and four randomly chosen units in the same way as 
the single pool with itself in the original model, indicate again that essen- 
tially the healthy carrier state 29 and the totally infected state 31 survive 
within each unit. The attractor _(2) is only reached with a very small 
probability decreasing with increasing system size. This more realistic 
model with infinitely ranged neighbor interactions between the units more 
attuned to immunological reality shows the remarkable effect that the 
presence of one single killer cell in a network turns out to be able to infect 
large populations of units being connected by a topological path within the 
network. This study parallels a current work of Dayan et al., (7) where, in 
analogy with cellular automata, the basic units reside on a regular lattice 
exclusively interacting with nearest neighbors--somewhat less in  accord 
with biological reality--and coupling coefficients are constrained to unit 
magnitude. They report that the system in general falls on attractor 29, 
whereas only in pathological limit cases is the attractor 0 reached in their 
model. 

An alternative description of the problem can be formulated in con- 
tinuous time by introducing nonlinear differential equations, thus breaking 
the artifical synchronism, where the concentration rate of each individual 
pool represents the basic dynamical continuous variable. Even now the 
dynamics with respect to the original Weisbuch-Atlan version with 
couplings of equal magnitude is not richer, but reveals only one single 
stable fixed point corresponding to attractor 29 in the discrete-time model. 

All the above findings, essentially exhibiting general truisms so far, 
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point to the idea that the model proposed by Weisbuch and Atlan, even in 
extended versions, is a pragmatic but evidently still limited approach 
to the problem, partly due to the simple interconnectivity of the network 
explaining its elementary mathematical nature. However, it might 
nevertheless serve as a reasonable starting point constituting a new 
direction for a network approach to the immune system as an interacting 
manylymphocyte assembly based on synchronized binary threshold 
elements operating in discrete time. The basic model can easily be 
generalized to include external signals of antigens and to incorporate 
activity-dependent plastic coupling coefficients in analogy to Hebb's 
postulate. (3) 

It would be of interest to study an extension of the connectivity of the 
network systematically, although an additional inhibitory link from the 
suppressor pool C5 to the killer pool C1 as suggested in ref. 8 only leads to 
the final virgin state _0, in contrast to their report. One should expect that 
feedback interactions with respect to the active killer cells, while preventing 
the problem from being completely solved analytically, open the way to 
cycling activities of the network corresponding to periodic diseases found 
in physiological systems, (9) thus giving rise to more complexity and richer 
dynamical behavior. 

A C K N O W L E D G M E N T S  

I thank U. An der Heiden, K. Rajewsky, D. Stauffer, and G. Weisbuch 
for fruitful discussions. Thanks are also due to G. Porenta,  M. L. Ristig, 
and G. Senger. Funding for this work was provided in part by the 
Deutsche Forschungsgemeinschaft under grant Ri267/9 and Sonder- 
forschungsbereich 125. 

REFERENCES 

1. N. K. Jerne, Sci. Am. 229(1):5~60,(1973).  
2. G. W. Hoffmann, J. Theor. BioL, in press. 
3. D. O. Hebb, The Organization of  Behaviour (Wiley, New York, 1949). 
4. G. Weisbuch and H. Atlan, J. Phys. A 21:189 (1988). 
5. I. R. Cohen, Immunol. Rev. 94:5-21 (1986). 
6. W. S. McCulloch and W. H. Pitts, Bull. Math. Biophys. 5:115-133 (1943). 
7. I. Dayan, D. Stauffer, and S. Havlin, J. Phys. A 21 (Comments). 
8. G. Weisbuch and H. Atlan, NATO ASI Series, 17"41,497-501. 
9. M. C. Mackey and U. An der Heiden, Funkt. Biol. Med. 1:156 (1982). 

Communicated by D. Stauffer 

822/52/1-2-32 


